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Full Causal Theory of Bulk Viscosity and Specific
Entropy of the Universe
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This article deals with the full Israel-Stewart causal theory of bulk viscosity as employed
to the dissipative expansion of the early universe. It is shown that the nontruncated full
theory can be cast in the form of a noncausal theory with an auxiliary condition which
states that the square of dissipative contribution to the speed of sound varies with the
particle number in a comoving volume. Also, a generalized temperature appears in a
cosmological invariant which is shown to hold good for the dissipative expansion in an
intermediate brief transition period (around the epoch time 1023 s) between the

very early “mild inflation” stage of the universe and the standard radiation-dominated
FRW era of it. With this generalized temperature, the Gibbs equation has been general-
ized. This equation is also shown to have an alternative form with a term depending on
bulk viscosity. In the dissipative transition period, the universe as a thermodynamically
open system of viscous fluid can generate specific entropy. In this period the temper-
ature rose to a considerable extent. Due to the cosmological invariant, the dissipative
contribution to the speed of sound and consequently the particle number decreased
sharply, ensuring the second law of thermodynamics. It is possible to have an estimate
of the specific entropy in consistency with the observations. The total entropy and the
particle number of the observable universe have also been found here. These estimates
agree with the accepted values for them.

1. INTRODUCTION

In the early universe dissipative processes played an important role. One of
such processes may be included in a theory of the evolution of the universe if one
has to account for the present large value of the specific entropy per baryon. These
processes are phenomenologically realized in a cosmic imperfect fluid model with
bulk viscosity. In order to have a model causal and stable, the best option for
a consistent relativistic nonequilibrium thermodynamics that may be employed
is the full causal thermodynamics (Hiscock and Lindblom, 1983; Hiscock and
Salmonson, 1991; Zakari and Jou, 1993) rather than the truncated version of it or
the old first-order relativistic theory of Eckart (1940).
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Earlier we (De, 1997a, 1999) have considered the generation of specific en-
tropy per baryon in the framework of the noncausal theory of Eckart in a cosmic
viscous fluid model. Several other authors have considered FRW cosmologies in
a noncausal and unstable first-order thermodynamics as well as in the “extended”
irreversible thermodynamics, the truncated version of the full causal theory (for a
good number of references see Maartens, 1995). In fact, the extended irreversible
thermodynamics is a theory that includes the previously neglected second-order
terms in Eckart theory. This can prevent noncausal and unstable behavior of the
first-order theory. But, the truncated version of the causal thermodynamics of bulk
viscosity does not behave properly in the late universe as in the case of noncausal
theory. On the other hand, the nontruncated, that is the full causal theory does be-
have well at all cosmological times. Therefore it is desirable to employ full causal
evolution equation for the bulk viscosity.

Presently we shall discuss the production of specific entropy in the early
universe to account for the present observed value of it in the framework of full
causal thermodynamics. Here, the early universe in its initial stage is regarded as
a thermodynamically open system in the sense of Prigogine (1989), in which both
the particle creation and the entropy generation are possible. In fact, it was shown
earlier (De, 1999) that the universe went through a “mild” inflation from a Planck-
order time to an epocl = 0.26 x 10~2% s with particle and entropy production.

It had a very brief “transition” period just before the epechwvhen the universe
became animperfect fluid with bulk viscosity. In this transition period the particles
(massive) became relativistic and contributed to the radiation energy density. This
phase transition in the transition period is, in fact, modelled in terms of the dissi-
pative process which is realized in the viscous fluid model of the universe. After
the period of transition the universe entered into the FRW radiation-dominated era
with the standard cosmology.

We begin with the following section in describing the cosmic fluid of the
transition period with the full causal evolution equation for the bulk viscosity.

In Section 3, we shall discuss in more details both the truncated and the full
transport equations and show that the expression of the bulk viscous pressure for
the full theory retains the same form as that in the linear theory if the square
of dissipative contribution to the speed of sound is proportional to the particle
number in a comoving volume. A cosmological invariant is shown to hold good
with a generalized temperature and with this temperature the Gibbs equation is
generalized. In an alternative generalization with the usual temperature it will be
shown there that this equation has an additional term depending on bulk viscosity.
An expression for the rate of production of specific entropy will also be given.
In the subsequent Section 4, the production of specific entropy in the transition
period will be discussed and an estimate of it will be given. We shall also find the
estimates of total entropy and particle number of the observable universe. In the
final Section 5, a summary of main conclusions and results of the article will be
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furnished with some remarks. In the following we shall use the natural unit with
Boltzmann’s constarkg = 1.

2. COSMIC FLUID WITH BULK VISCOSITY

The energy momentum tensor for an imperfect cosmic fluid without shear
viscosity or heat flow is given by

Tab = pUalp + (P + M)hgp 1)

whereu? is the particle-frame 4-velocity; the energy density, anglthe equilib-

rium pressure. Herd] is the bulk viscous stress ahgh, = gap + UaUp represents

the projection tensor. Since in an expanding universe with the viscous fluid the
dissipation due to this viscous stress gives rise to a decrease in kinetic energy and
a consequent decrease in pressure, then we mustlhav®. It is discussed in

Udey and Israel (1982) that the dissipation from microscopic heat flow due to
different cooling rates in the mixture (for example, radiation and matter, low- and
high-energy particles in Boltzmann gas etc.) can be represented by the viscous
stresd1. The particle flow vector and the entropy 4-flux are respectively given by
the following relations.

N? = nu? 2
wheren is the particle number density.
S = oerr N? ©))

whereos is the effective nonequilibrium specific entropy which must be positive.
oeff IS given by (Hiscock and Salmonson, 1991; Zakari and Jou, 1993)
' e

2nT¢
whereT ando are the local equilibrium temperature and specific entropy respec-

tively. Here,¢ and t are respectively the coefficient of bulk viscosity and the
relaxation time. From (3) and (4) it follows that

_ T 2 a
Sa;a‘[(“ 2nT¢H>N ]

zan+o(h+3Hn)—$[§n+}nT <T—ua> } (5)

(4)

Oeff = O

2 T

where H = u?; is the fluid expansion and = n u®. H defines a comoving
length scaleR by the relationR/R = H. This length scale is the cosmic scale
factor in a FRW universe. Now, if the conservation lal&, = 0 andT2", = 0
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which imply respectively,
N+3Hn=0 and p+3H(p+p+1I)=0 (6)

hold, then we have from (5) the following equation for the rate of entropy pro-

duction:
) Mir. 1 Tu?
Sa'aZUn—?[EH—I-EHT <§—T>Yaj| (7)

Again, the Gibbs equation for the local equilibrium variakieandT is

Tda:d(§)+pd<%) ®8)

From Eg. (8) and the conservation equations (6), the following equation for the
production rate of specific entropy follows:

3HTII
=— 9
nT ©
Using (9) we get from (7) the entropy production rate as
I1 . 1 Tu?
a=——|3H+ I+ =0T [ — 1
S T [3 +§ +2 (§T>;J (10)

It is shown in Hiscock and Lindblom (1983) (see also Hiscock and Salmonson,
1991; Zakari and Jou, 1993) that the following causal evolution equation for bulk
viscosity (the transport equation) can ensure the second law of thermodynamics
$*., > 0 in a simplest possible way, that is, in a linear form of equation for the
bulk viscous pressurH:

ey € Tt ¢ T
I+ =—3¢H 211’[(3H+T : T) (11)

Here,e = 1 gives the full theory. On the other hard= 0 makes it a truncated
theory. It is pointed out here that= 0 gives the noncausal theory. The transport
equation (11) leads to

H2

Sa;a = = (12)
¢T
It is pointed out by Maartens (1995) that the truncated theory implies an

implicit “temperature law”

T §R3 (13)

Of course, Maartens has argued that this temperature law can make the situation
unphysical because the temperature must be increasifiy-asoo, that is, in
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the late universe unless the ratig; can decrease faster than the increase of the
comoving volume. For this reason he advocated for using either full nontruncated
form of the transport equation or a generalized nonequilibrium temperature and
pressure with the generalized Gibbs equation (see Gariel and Le Denmat, 1994;
Pavonet al, 1982; Zakari and Jou, 1993).

3. GENERALIZED GIBBS EQUATION

We first consider one important aspect that appears not to have been pointed
out previously. The fact is that one can retain a solution of the full transport
equation (11) (witkk = 1) in the same form as that in the noncausal theory, that is,

IMT=-3H¢ 14)
if the following relation is satisfied as the supplement:
t ¢ T 21
BH+ - -2 — =+ —=0 15
+ t ¢ T + I1 (15)
or, equivalently,
\V/ 2
Y% _ constant (16)

V2T
whereV = R3(t) is the comoving volume. In deducing (16) from (15) we have
taken into account the following field equation of the flat FRW universe:
ko = 3H?, (k=87G) (17)

and also the relation (Maartens, 1996) between the relaxation tiruwed the
coefficient of bulk viscosity given by

T = ¢
V2yp

wherev is the dissipative contribution to the speed of sound and satisfies the
inequality.

(18)

vZ<2-—vy (19)

because of causality. In deducing (18) Maartens has used-the equation of
state

p=(—1p (20)

We have previously considered the early universe as a thermodynamically
open system in which the creation of particles could occur (De, 1993a, 1999). The
law of conservation of particles, that 2., = 0 does not hold for such systems.
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On the other hand, the other conservation law in (6) has been modified there in the
following form (for the bulk viscous fluid model):

. N
p—ﬁ(p+p)+3HH=0 (21)

It should be noted that when the particle number is conserved weliave —3H
and the usual conservation law in (6) follows. Now, the entropy equation for the
viscous fluid is
S TSN
T—=———3HII (22)
V V N

This is a generalization of the entropy equation for the open thermodynamic system
of perfect fluid, given by Prigogine (1989). Hel®js the entropy in a comoving
volume, that is,S = s R® wheres is the entropy density. Alsd\ = nR®. Now,

since the specific entropy is given by

the same Eq. (9) for the production rate of it follows from the entropy equation (22).
Again, using (9) and the conservation equation (21) for the present case of the open
system we can find Gibbs equation (8) as follows:

3Hl‘lt dt (+)
nT nTp pTP

do
Tar =294 a(2) 4 pa( )

For the present case where the particle number is not conserved, the rate of
entropy production, that i§., is given by (5) in whicho'is to be replaced by its
expression as in (9). Usually the cosmic fluid is locally described by an equilibrium
equaiton of state that has the approximated form of an ideal gas:

p=nT (24)

with the linear barotropic equation of state (20).

Also, for a flat FRW universe with “power-law” expansion (thaf§t) o t#),
it is implied from (14), (20), and (21) that(t) oc 1/t o p/?
or

do = —

or

£(t) = Ap'/? (say) (25)

if, of course, the number densityalso follows the power-law. When the patrticle
number is conserved, that is, whi#§., = 0 we haven/n = —3H andn follows
the power-law. Conversely, whei(t) is of the form (25) them follows the power-
law also for the case of nonconserved particle number.
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Now, from (16) and (24) it follows that

N¢?2
—— = constant
vep
or
AZN
———— = constant 1
VT ¥ #1)
or

N o v2 (26)

Thus, the full causal theory gives rise to noncausal form as the solution for the
viscous stress with the implicit condition (26). From this condition it follows that
the particle number conservation implies a “constamny’djssipative contribution

to the speed of sound. Further, for radiation-dominated FRW universe we have
from (16) and (25),

R3p o V2T (27)
Since, in this casp o 1/R* it follows that
v2T R = constant (28)
This relation insists us to generalize the temperature as
T =0T (29)
so that one can have the usual cosmological invariant
T R = constant (30)

Here, ¢ is a constant which will be specified later. In this connection we can
remind the following result given in Maartens (1996). If one insfsts nT then
the Stefan—Boltzmann law o« T# cannot hold. Alternatively, if we impose the
Stefan—Boltzmann law then the ideal gas law cannot be valid unless the fluid
returns to equilibrium. For the present cage= nT and p o« T* cannot hold
simultaneously. In factp oc v8T#. Again, with the generalized temperature, it
follows that

~4

pxT (31)
but p # nT. On the other hand,
nT
- (32)

These two laws can hold simultaneously when the fluid returns to equilibrium
with the particle number conservation, that is, with a constant
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With the generalized temperature, the Gibbs equation and the entropy
equation (22) are, respectively, generalized into the following forms (by replacing
TbyT):

Tda—d( )+pd<> (33)
and
T_S=<T—S)E—3HH (34)
V V /N
From (33), it follows, by using the conservation law (21), that
. —3HO —3HII
T 7T T nTe? (35)

asthe rate ofincrease in specific entropy. This relation also follows directly from the
generalized entropy equation (34). With Eq. (35), we have the entropy production
rate from (5) as

3HII . Mfir. 1 Tu?
sa;a:_T+o(n+3Hn)—?[EH+EHT<§—T>J (36)

or, by using (26) which give

N n v
— =—+4+3H =— 37
N n+ \% (37)
we have
3HII v TII|rt- 1 Tu?
PLi=————+20n—— — | -1+ =0T 38
R L TL“ ‘2 (ﬂ)} (38)

That this generalization of Gibbs equation does not change the tenet of the full
transport equation given by (11) will be realized from the following consideration
which shows, that the second law of thermodynan®gg, > 0, can also be ensured

in this case. From (36), using the full transport equation (11) we have

3HII 1 /1
Saa——?-‘r n(3H+ >+?<?+3H>
2
9‘;‘_ ¢ +o n<3H + > [using (14)]
_¢6? n
- T+on<9+ﬁ> (39)

where H = ¢ is the expansion scalar. Now, we use the following relation for the
specific entropy which is the generalization (by replacinigy T) of it (Israel and
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Stewart, 1979; Prigogine, 1989) in terms of relativistic chemical potematial
_h—pun h—un

= = — 40
7= Tovn Tn (40)

whereh = p + pis the enthalpy per unit volume. Then, from (39) we have

0% h—un n
Sa- = —== ~ 8 - 41
@ T + T + n (41)
From (14) and (21) we have

p—gh—gezzo 42)

Thus, we have from (41) and (42) the following expression for the rate of entropy
production:

1 N
S = x {p +ho — Mnﬁ} [by using (37)] (43)
Again with the equation of state (20), we have
pp. wunN
Sa=%1-0—"——+y6 44
o= {2o- 220+ 0] (44)

For the FRW universe witlR(t) « t”2 andy = 4/3, we have

o 20 4
—4+y0=—+-6=0
0 Ty 0 + 3
Consequently, we get
un N
P,= - — 45
a =N (45)

Thus, the second law of thermodynami&8,, > 0, can be ensured N/N <o.
For . = 0, the equality sign in (45), of course, holds good. kGt 0, the particle
number cannot increase for the validity of the second law of thermodynamics. This
situation will be examined in the subsequent section.

Interestingly, the generalized Gibbs equation (33) can be written in an alter-

native form:
1 2hd
Tdo=d<§>+pd<:>+7—v (46)
n f i v

Here, T is the usual local equilibrium temperature but the particle number density
is generalized as

A = v®n 47)
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It is evident that the additional term in the Gibbs equation (46) depends on the
bulk viscous pressure through the parametdét may be pointed out here that the
generalized Gibbs equation in Pawetral. (1982), Gariel and Le Denmat (1994),
and Zakari and Jou (1993) has an additional term that also depends on the bulk
viscosity. It is interesting to note that the generalized entropy equation (34) takes
the following form:

TS TSN

vV -V 011 (48)
with the generalized particle numbir= AR® and the generalized entrof®/=
Sev? in the comoving volumeR®. Obviously, the form of the entropy equation
remains invariant under the transformation to the generalized quantities (particle
number and entropy). Again, the specific entrepig given by

S
==X (49)

and its rate of increase can be written as

BHIT  3HI _ 3HTI
nT ~ nev2T ~ AT

o= (50)

When the particle number becomes constant, thadds, = O we havev = con-

stant; the Gibbs equation as well as the entropy equation take their usual forms.
Now, from (14) and the conservation law (21) it follows that

1 (> 2yv
(=5 (5 +ro-2%) 1)

In deriving this, we have used field equation (17), equation of state (20), and
Eq. (37). Here also, for the FRW universe, wiRt) o t/? andy = 4/3 we have,
since

26 8V
—_— = = ——— 2
o, Tr9=0, () oKV (52)
and
892 v
~ T oknTeV3 (53)
Again, by using (20) and (24) we have
o= _ & (54)

VAVE
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For the caser # 4/3, we have, of course, the following rate of increase for the
specific entropy:

. 1 20 Y

=——{— 0— — 1 55

o (y—1)v2z{9+y V} (v #1) (55)

For a more general case of time dependenve have to modify some of the
equations above. Of them, the important one is (26) which in this case becomes

Nocy(y —1v? (v #1) (56)
The rate of increase in specific entropy for this case is given by
. 1 20 2y -1 v
= - 1= — —2y- 1 57
b= o T ) bFD 6D

4. SPECIFIC ENTROPY: MILD INFLATION AND TRANSITION ERA

In the previous articles (De, 1993a, 1999), both the particle and the entropy
productions were considered in an early universe taken as a thermodynamically
open system. Such an early universe as a thermodynamically open system was
considered earlier by Prigogine (1989), who modified the thermodynamic energy
conservation law for homogeneous and isotropic universes. An early universe with
bulk viscosity was also considered previously (De, 1997b, 1999) in the framework
of standard general relativity (GR) as well as in a modified general relativity (MGR)
of Rastall (1972), Al-Rawaf and Taha (1996a,b). In the imperfect fluid model of
the early universe with bulk viscous pressure it was possible there to obtain the
presentvalue of the specific entropy per baryon in consistency with the observation.
Of course, the relativistic theory of non-equilibrium thermodynamics employed
therein for the FRW universe filled with dissipative fluid was the noncausal theory.
Here, we shall reconsider the early universe as dissipative fluid described by the full
theory of causal transport equation which is given and discussed in the preceding
section.

It was shown in a previous article (De, 1999) that the universe went through
a “mild inflationary era” from a Planck order time to an epoch 10-23 s with no
“turn-on” and “turn-off” problems for this stage. In that period, there were particle
creation as well as entropy production although any increase in the specific entropy
was not possible. This fact will also be evident later in the following discussion.
There the specific entropy was shown to be produced in a “transition” period just
before the epoch time = 0.26 x 1023 s, when the fluid became dissipative due
to transition of the particles (massive) into the ultra relativistic state around this
epochu. In that consideration the epoch-dependence of particle masses, significant
only in the early period of evolution of the universe was taken into account. The
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particle masses which were very large (of the order of Planck mass) attained
their “near” present values at this transition era. The epoch-dependence of particle
masses is, in fact, a consequence of Finsler geometric approach in building up the
internal symmetry of hadrons (De, 1986, 1991, 1997a). This geometrical approach
provides the field equations for the fundamental particles and also the “dynamics”
of hadrons.

In the previous section it was pointed out that Prigogine (1989) modified the
thermodynamic conservation law.

d(oR) + pA(RY) ~ Ld(NR) = dQ (58)

For adiabatic transformation we hasl® = 0 and consequently we can find the
following equation:

N
p=_h (59)

This equation is, indeed, modified into (21) for imperfect fluid with bulk viscosity.
The field equation (17) holds for the mild inflationary stage as well as for tran-
sition era. In an alternative interpretation, one can retain the usual conservation
law (Bianchi identity) with a phenomenological pressgrastead of above true
thermodynamic pressung that is,

d(pR% = —pd(R°) (60)
where the two pressurgsand p are related by

P=p+pc (61)

Here, p; represents a pressure that corresponds to the creation of particle if it
is negative. Wherp, = 0 the creation of particles stops and in this c@ise p.
Consequently, the conventional law of conservation holds, or in otherwords, the
usual Einstein equations of GR hold. The presquris given by
hN
=——— 62

Pe=—5 (62)
For this particle production era of the very early universe the energy density
Pm + p, should be dominated by the matter dengitythat is, the radiation energy
densityp, < pm. Consequently, we can take

P = pm=mn (63)

where,m is the particle mass. Here, for simplicity, the masses of created parti-
cles of all types are assumed to be the same. The masson the other hand,
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epoch-dependent and the following relation gives rise to the mass of a particle at

an epoch time:
_ 200
m=m (1 —+ T) (64)

wherea = 0.26 x 1023 s (De, 1997a) andh represents the “inherent” mass of

the particle. This inherent mass is equal to the present mass of the particle with
an extremely high degree of accuracy. For massless particles (that is, for particles
with no inherent mass) the corresponding relation is

2\
m= <§) ame (65)

whenr is the mass of the particle at the epdch «. The equation of state is
taken to be barotropic and is of the form:

p=f(®)p (66)

From Egs. (59), (63), (64), (66), and (17) the following governing equations for
the early universe can be obtained.

p_2 _h LY PR
;_7_n(1+f(0))_m<1+ f(9)> ©D
m 200
E=3+a9 (68)

For a viscous fluid model of the universe, more general governing equations
for the evolution of the early era can be obtained with the use of the corre-
sponding conservation law (21) and the following expressions,aindp, (De,
1993a):

Pm = My, (69a)
py = —=1)mn, + E,n, (69b)
Z—V —r2_1 (69c)
m
where
2\ —1/2
r= <1 - <‘;—2>> (69d)

andn = ny + n, is the total number density,, andn,, being particle and pho-
ton number densities respectively. Hefe?) is the mean square velocity of the
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particles. The said governing equations are

b 20 h
— = =3k + @+ fO)

0
1+ £(0) E, m E, [T —1)m
T f0) Ey+r(r_1)m{ﬁ E_y[ E, }
r m 3kz(t)
+F[2_E_y]}_ ) (70)

where we have used the expression (14) for bulk viscous pressure. These equations
are, in fact, modifications of the governing equations obtained earlier for perfect
fluid (De, 1993a)

The trivial solution of Egs. (67) and (68) is the usual exponential inflation

O=p=n=m=0 (71)

On the other hand, i # 0, these equations give a solution f&(). It is
given by

b
3+ ab

Thus, the equation of state is specified by these equations. For this nontrivial
case the expansion scatacannot be determined. It was, indeed, determined in

a previous consideration (De, 1999) of the early universe in the framework of
MGR. The expansion scalar for GR can also be obtained from the MGR case as a
special case with the parameter value- 1. This parameter; is regarded as the
characteristic of the non-Newtonian regime and the standard GR corresponds to
this particular value of the parameter. There the equatio# fehich decides the
nature of the early universe is obtained as

f(0) =

(72)

(2 (n—2)f"®) vy O
f(9)9<9 1_|_(n_1)f(9)>+f(19)6+3[1+f(6’)]_0 (73)
The solution fol for all  inits range, < n < 1isf = 3/t and hencer(t) « t.

This corresponds to a “mild inflation” in the early stage of the universe. Also, it
was shown there that the mild inflation turned off automatically around the epoch
time «, when the universe entered into the radiation-dominated FRW stage with
standard cosmology. This “inflation” has no “turn-on” problem as it was shown in a
previous article (De, 1993b) that the universe must have gone to an expansion stage
from a Minkowski space—time filled with created very massive particles (masses
about 50 times Planck mass). In fact, these massive particles were created quantum
mechanically through an anisotropic perturbation of that flat space-time. These
very massive particles made the Minkowski space—time unstable and expanding
(Nardone, 1989). In the mild inflationary stage thus turned on, the specific entropy
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was not produced as we shall see now. In fact, itis evident from (50) that a nonzero
bulk viscous pressure can only produce the specific entropy. Sitte 0, we
have from (51),

Now, for the “creation era” FRW universe witk(t) oc t#(8 > 0) before the epoch
time «, we have from (63) and (68),

p_2 _m h 6. n

P 0 m n 6 n
therefore,

2 _N_h o 0,

% N n 0

Then the inequality (74) gives the condition
0
2—y)->0
@2-7v)g=z

Now, sinced /6 = —1/t < 0, thenwe musthave2 y < 0. Again, sinces cannot
be>2, we must haver = 2. This value ofy is, indeed, obtained from (72) for
t < a. Now, this value ofy makes; (t) = 0 and consequently it is concluded that
no specific entropy was produced in this particle creation era of mild inflation.

Now, for the “creation era” of the early universe before the epgake have,
by using the equation of state (66) wifl{) ~ 1 and the ideal gas law (24),

p=p=mn=nT (75)

since this era is matter-dominated and the energy density is given by (63). Thus,
we have from (75) with the mass given in (64) for the inflation pertod @),

T=m=~ ZO‘Tm (76)
wheremisthe inherent mass of the particle. The equation (76) gives the temperature
law for this period. Taking muons as the representative particles werhave
5.37 x 102 cm™? (in the unith = ¢ = k, = 1 with quantities expressed in cm
only). Therefore, around the epoetihe temperature might have beed36m—1.

From (76), it follows that the temperature was3.0°? cm~?! at the Planck time.
Thus, universe temperature dropped from its very large valug &4 a much
lower value €10 cm™1) around the epoch. In fact, at an epoch= 0.1 « the
temperature was #)cm. On the other hand, we have calculated the energy
density at the Planck order tinfe= 0.05 ty from the quantum matter creation
due to an anisotropic perturbation of the Minkowski space—time (De, 1993b).
The universe went on an expansion phase (mild inflation) at this Planck order
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time{ and the energy density followed the rylex 1/t due to the Einstein field
equation (17). This can give the value of the energy density at the epocktime
Actually, att, the energy density was calculated as

p(f) = 2.8 x 10'm;, (77)

wheremy, is the Planck mass given Iy = 1/8zmy. Itsvalueis 122 x 10*?cm™*.
Then it follows that

2
pla) = (&) o) =6.14x 10%°cm™ (78)

Now, if the radiation-dominated FRW universe started at the epoulith the
standard cosmological principle,
then

7?2 4
pl@) = py(e) = 32T (79)
From the relation (79) wittp(«) in (78) the temperature at the epogttan be
determined. It is given by

T, =552x 1072cm™? (80)

Thus, we see that the temperature of the universe dropped considerably in an
epocha/(¢’ = «) around the epoch, when the matter-dominated mild inflation
ended. The usual radiation-dominated FRW universe was set in just at thevepoch
when the temperature shot up to a very large value compared to tatmathis
transition from the “creation era” to the usual radiation era the universe might have
been an imperfect fluid with bulk viscosity. It is a transition periad &) when
the particles became relativistic and, in fact, this phase transition is modelled in
terms of dissipative process of bulk viscosity.

Now, for an imperfect fluid the relation (61) is modified into the following
relation:

pP=p+p+0 (81)

where p; is given by (62). For the full causal theory the viscous pressuiie
given by (14) with the supplementary condition (26). Again, the phenomenological
pressuref is given as (De, 1993a)

p=z—r (82)

Using (69d), we haved = (p/3)(1— 1/T'?) and consequently the relation (81)
gives

P 1
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For the transition periody, «) when the particles became relativistitachieved
a very large value since?) — c2. Therefore, we have from (83) the following
relation with the use of the equation of state (66):

1
pc+l'l+,0<f(0)—§>=0 (84)
Again, for the transition erax(, &) we have, from (72)f (6) >~ 1/3 since for this
periodd = 3/2t asp = (1/3)p. Consequently, we have
pc+ I ~0 (85)

Sincell < 0, we must havey, > 0 and therefore it is evident from (62) that the
particle number must decrease in this transition period in consistency with the
validity condition (45) of second law of thermodynamics. Using (14), (26), and
(62) we have from (85),

y 1
8—pY +¢6>~0 <sincef(9) o~ 5)

36 v
Therefore we have, by using the field equation (17),
8 v
t)~ ———
(0> —5ey

which is the same relation (52) obtained in an alternative way. Consequently,
we have the same relation (54) for the rate of increase in specific entropy. In
fact, the expression in (54) is an approximation of this rate given in (57) for a
general case of time-dependenbecause the other terms in the R.H.S. of that
expression are small compared to the last term there. We have pointed out earlier
that before the transition periad = 0. Again, if the usual radiation-dominated
FRW era started at the epoahwe must havep. = 0 and therefordN =0=v

for t > «. Also, from (85) it follows thatll = O after this epoch. During the
transition periodv decreases sinchl decreases. 1¥? decreases more rapidly
than the increase iR(t) then the universe temperatuferises in this period
because of the cosmological invariant (28). As= 0 after the transition period

the specific entropy was produced only in this period. Therefore, one can integrate
the relation (54) for find the produced specific entropy.

It is given by
4 /1 1
Oy — Oy = z (E — V—§,> (86)
where the quantities with their subscripts represent their values at the corresponding
epoch times. Since, <« o, andv, < V., we have
4

~ w2 (87)

Oq
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We can now specify the constaft The relation (87) would be exact if at the
beginning epochy’ of the transition era, the specific entropy was = 4//v?,,

o

wherev?, satisfies the inequality condition (19). Here, this condition is given by

2 1
VZ<2—y=1-f(0)~ 3 <sincef(0) ~ §> (88)
Thus, one can takeg, ~ 2/3 and consequently we have
6
w = 89
ow = 5 (89)

On the other hand, we have the constant specific entropy for the creation era (the
mild inflation period upto the epoati) as
_h—un h

™ = Tn (assuming: = Ofor this period)

or

_yp v 1+1(9)
O = — = =
p ry-1 f(0)

Since f(#) ~ 1 for this period, we get- = 2. This constant value of specific
entropy changed at the beginning epaciof the transition era a$(0) changed
to a value ¥3. The value ofb at o’ follows from (90). It is given byo, = 4.
Therefore, from (89) it follows that = 3/2 and consequentlv?, = 1. Again,
from (28) we have

(90)

VoT Ry = Vi Tu Ry
Therefore, from (87) it follows that

= EE l = 4@ (91)

V4 Ta/ Ra/Vs, Tot/ Ra/
We have pointed outabove thigt <« T, whereT, is givenin (80). The temperature
T, can be computed from (76) if the beginning epaciof the transition period is
ascertainable. However, one can find an estimate for the produced specific entropy
by takinge’ very close tax. If we takea’ = 0.9« we haveT, ~ 1.2 x 1083 cm™?
and

Oq

0y ~ 2 x 101 (92)

Even, a more short transition period (say, with= 0.99%) cannot change this
estimate. On the other hand, a bit longer period witk= 0.5¢, say, cannot lower

it very much. In fact, for this case we get ~ 1.41 x 10'°. The estimate of,
corresponds to the present value of the specific entropy as it remained constant after
the transition period. Also, it is to be noted that the temperature after the epoch
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did not increase further asremained constant on the onset of the usual radiation-
dominated FRW universe. In fact, it began to decrease because of the cosmological
invariant (28) with constant. The temperature &t= « can give the correct back-
ground temperature of the present universe. It is evident that the present value of
the specific entropy depends on the duration and beginning of the transition period.
Of course, the variation in its estimates is not much and as we have seen above
that the estimates are of the order of%id consistency with the observations.

Lastly, we calculate the total entropy in the observable universe with the
assumption that nearly all entropy was produced just before the onset of standard
radiation-dominated FRW era at the epaclAt the epochy, the total entropy in
a comoving volume is

S = oNm(a)R¥() (93)
To calculateS, we use the following conventional relation
m
o=3722 37 (94)
om T NmT

and the cosmological invariant (28) with constant
The cosmological invariant gives

R(e) T () = RoTp = constant
=1.18x 10®u(1< u < 1.8) (95)

where,Ry and T, are the present scale factor and the temperature of the universe,
respectively. Againp, andT at the epochy are, respectively, given in (79) and
(80). Now we have from (93) and (94),

S— 3.7”Tl R3(w) (96)
From (95), using the value df att = «, we have
R(e) = 2.14 x 1CPucm (97)
Consequently, we have from (96),
S=4.02x 10°7u® (98a)
or, we have
402x 107 < S < 234x 10% (98b)

From (93) and the value ef, as in (92) we can find the total particle number of
the observable universe. In fact, it is nearly equal to the total particle number in a
comoving volume at the epoeh It is given by

S
Nm = Nm(e) R3(a) = — = 2.01x 10"u® (99a)

o
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that is,
201x 10" < N < 1.17 x 108 (99Db)

These values for the entropy and particle number are in agreementwith the accepted
values (Kolb and Turner, 1990).

5. CONCLUDING REMARKS

In this article we have discussed full Israel-Stewart causal theory of bulk
viscosity as applied to the imperfect fluid model of the universe. The universe
regarded as a thermodynamically open system in the sense of Prigogine (1989)
went through a mild inflationary stage due to the instability of the Minkowski
space—-time caused by the very massive particles (of masses about 50 times the
Planck mass) at the Planck order time. Earlier (De, 1993b) it was shown that these
massive particles were produced at this earliest epoch because of an anisotropic
perturbation of the Minkowski space-time. The created particles could give the
energy density of the universe at the Planck order time as well as in the subsequent
era. Matter and entropy creation continued in the mild inflation era, which is a
matter-dominated FRW stage. This stage transited into the standard radiation-
dominated FRW era through an intermediate transition period when the particles
(massive) became relativistic and contributed to the radiation energy density. This
period was, of course, a phase transition modelled in terms of dissipative process
and realized as viscous fluid model of the universe, where full causal theory of
bulk viscosity has been applied.

We have shown the following results for the full causal theory as applied to
the viscous fluid of transition era:

(i) The full (nontruncated) theory can be moulded into the form of the
noncausal theory with an auxiliary condition which states that the square
of dissipative contribution to the speed of sountl,is proportional to
the particle number in a comoving volume.

(ii) For the validity of the second law of thermodynamics the particle num-
ber (and alsor) cannot increase if the relativistic chemical potential
wu is nonzero. Ifu = 0, the second law of thermodynamics can be
valid.

(iii) A cosmological invariant (28) has been shown to hold good. From this
it follows that the temperature can increase in this era if the rate of de-
crease of/? is greater than that of increase of the scale faBR{). Also,
the usual cosmological invariant follows with a generalized tempera-
ture. Again, the decrease wfensures the validity of the second law of
thermodynamics.
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(iv) With this generalized temperature, the Gibbs equation has been gener-
alized. It is also written in an alternative form in which an additional
term has appeared. This additional term depends on the bulk viscosity
like the cases of generalized Gibbs equation of other authors (Gariel and
Le Denmat, 1994; Pavaet al., 1982; Zakari and Jou, 1993). The rate of
production of specific entropy has been obtained from this generalized
Gibbs equation.

(v) Forthe transition era of the universe which is a thermodynamically open
system of viscous fluid it is shown here that

M+ pc~0

For positivep., we have a decrease in particle number and consequently
we havell < 0. This is the condition to be satisfied by the viscous stress
because the dissipation due to it must give rise to a decrease in pressure.
At the end of the transition ena, = 0 as the particle number remained
constant thereafter, and hence we hBve- 0 also.

It is mentioned here that our consideration of dissipative expansion satisfies
the nonthermalizing condition. This is a consistency condition on causal viscous
cosmologies, given in Maartens (1995). In our case, this condition is given by

2
F~rl= V{(’;; <H (100)

wherer is the crucial interaction rate of the viscous fluid and is supposed to be
determined by the characteristic time It is easy to see that this condition is
satisfied in our case.

We have found an estimate of the specific entropy as generated at the end of
the transition era. This estimate corresponds to its present value in consistency with
the observations. It is to be noted that the temperature increased from a value of
nearly 162 cm~* to a large value of nearly 20cm~! during the transition period.

We have obtained the value of temperature at the epocbt from the present
value of it. On the other hand, it is calculated from the energy densitywahich

is obtained from the energy density at the Planck order time. This energy density,
in fact, is calculated from the quantum generation of massive particles due to the
anisotropic perturbations of the Minkowski space—time at the very beginning epoch
of the universe. We have also found the total entropy and the particle number of the
observable universe in consistency with their accepted values. In this connection,
we point out that Maartens (1995) has obtained such an accepted value of the total
entropy via dissipative inflation without re-heating. Of course, no such estimates
for the specific entropy and the total particle number are given therein.
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